Day 4: Sub Rectangle Sum 🍫
hardBinary SearchPrefix Sum
You are given an integer matrix $A$ of size $n\times m$ and an integer $K$.
Find the maximum sum of any contiguous sub-rectangle of $A$ such that its sum is at most $K$, and print that maximum sum.
If such value does not exist print $-1.$
Input Format:
The first line contains three integers $n, m$ and $K$ ($1 \le n,m \le 200$, $-10^9 \le K \le 10^9$).
Each of the next $n$ lines contains $m$ integers $A_{i,j}$ ($-10^4 \le A_{i,j} \le 10^4$).
Output Format:
Print a single integer: the maximum sub-rectangle sum not exceeding $K$ if it exists, else print $-1$.
Examples:
Example 1:
Input:
3 3 5
7 2 -1
100 -100 100
0 2 1